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Results of an experimental and theoretioal analysis are presented, concerning the six-beam
(220/242/044/224/202) diffraction of X-rays in thick perfect Ge crystals, under the conditions
when a part of the diffracted beams is Bragg reflected. Three cases are considered, when one, three,
or all five diffracted beams are Bragg reflected. It is shown theoretically that an enhancement of
anomalous transmission for the Laue beams takes place in all these cases. Experimentally this
effect is observed in the third case on the incident beam topogram, when the two-beam Borrmann
effect corresponds to Bragg reflection and is more weakly revealed than in the Laue case. Experi-
mentally as well as theoretically an unusual behaviour of the integral intensity for the (044) beam
is observed, when the number of Bragg beams varied from one to five.

TIpeP:CTaBJIeHbl pe3YJIbTaTbl 3KCnepl:lMeHTaJIbHbIX l:l TeOpeTl:lLleCEl:lX l:lCCJIep:oBaHI1ft
llIeCTI1BOJIHOBoit (220/242/044/224/202) P:I1cpl)aHUl:ll:lpeHTI'eHOBCHI1X JIyqeft B TOJICTblX
cOBepllIeHHblx Kpl:lCTaJIJIaX repMaHl:lH B YCJIOBI1HX, Korga 'IaCTb gl:lcpparl:lpOBaHHblx

nY'1EOB oTpamaeTcH no Ep8rry. PaccMoTpeHbl TPI1 CJIyqaH, B KOTOpblX no Ep3rry oTpa-
1f\aeTCH OgI1H, TPI1 l:l Bce nHTb gI1cpparl:lpOBaHHblx nY'1HoB. TeOpeTI1'1eCHI1 nOHa3aHO, '1TO
BO Bcex paccMoTpeHHblx cYJI'laHX I1MeeT MeCTO YCI1JIeHI1e aHOMaJIbHOrO npoxomgeHl:lH
JIaY3-nYQKoB. 8KCnepI1MeHTaJIbHO 3TOT 3(IH!JeKT06HapY1f\eH B TpeTbeM cJIyqae Ha Tono-
rpaMMe npHMoro nY'II-\a, Horga gBYXBOJIHOBOll 3(!HpeHT EopMaHa cooTBeTcTByeT oTpa-
meHI1IO no Ep3rry 11 npOHBJIHeTCH 60JIee cJIa60, '1eM B cJIY'1ae JIaY3. RaE 3ECnepl:lMeH-
TaJIbHO, TaH 11TeOpeTI1'1eCKI1 06HapymeHo He06bl'1HOe nOBegeHI1e I11-ITerpaJIbHOI1: I1HTeHCI1-
BHOCTI1 (044)-nY'1Ha npI1 I13MeHeHI1I1 QI1CJIa Ep3rr-nyqgOB OT ogHoro go maI1.

1. Introduction

Six-beam X-ray scattering in perfect crystals represents one of the most interesting
and relatively complex phenomena in solid-state physics. This scattering may be
realized because of the high axial symmetry of the crystals, due tQ which certain recip-
rocal lattice points form hexads of vectors, representing polygons inscribed into
a circle. In diamond, silicon, and germanium crystals, the simplest such case, namely
(220/242/044/224/202), has theoretically been considered for the first time in [1]. Sub-
sequently the six-beam diffraction has been considered both theoretically and experi-
mentally in [2 to 12], experiments being carried out on Ge crystals.

In all these works such a geometry of experiment has been considered when diffract-
ed beams emerged from the crystals through the output surface, i.e. represented the
Laue-type beams. Actually all the reflecting planes were assumed to be normal to the
surface. The reason of this assumption apparently lies in the fact that it was for such
a geometry in [1] that.a strong enhancement of the anomalous transmission effect has
been predicted, i.e. a decrease of the minimum interference absorption coefficient

1) Mravyan 1, 375049 Erevan 49, USSR.
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Fig.!. Various diagrams of mixed Bragg-Laue geometry in the six-beam diffn"Lction

(lAC) by a factor of several thousands for the exact multibeam direction of the incident
plane wave [8]. In this case an analytical solution of the problem is also possible, which
helps to get physical insight into the phenomenon.

Nevertheless, it is interesting to analyse the features of the six-beam X-ray diffrac-
tion for such an experimental set-up when some of the diffracted beams leave the crys-
tal through the input surface, i.e. are Bragg reflected. Cutting the crystal surface at
a certain angle IXto a plane of reciprocal lattice vectors (H-plane) and normally to the
scattering plane for the (044)-reflection (S-plane), one can realize the cases where one,
three, or all five diffracted beams are Bragg reflected. In Fig. 1 beam path schemes for
these cases are shown in their,projection on the S-plane, where the incident and the
(044)-diffracted beams lie.

From a practical viewpoint it is important to give an answer to the following ques-
tion: how does the presence of Bragg-reflected beams influence the enhancement of
anomalous transmission of Laue beams. In the two-beam Bragg scattering case the
minimum lAC is known to decrease in a certain range of angles in the vicinity of the
Bragg angle, as compared with the single-beam case, but not so strong as in the Laue
case. Also of great interest is the character of the angular dependence of the intensity
distribution both of Laue and Bragg reflected beams, particularly the "aufhellung"
effect.

These are the problems considered in the present paper. We have found both experi-
mentally and theoretically that the anomalous transmission enhancement effect takes
place over a broad range of angles IX,and that the symmetrical case (IX= 0) considered
earlier is by no means optimum. Theoretical analysis has been carried out following the
scheme described in [13], but in order to be able to calculate the Laue beam intensities
for thick crystals we have developed the perturbation theory using a small parameter
exp (-tfLA), where t is the crystal thickness and LA the absorption depth. The physical
mechanism of the anomalous enhancement effect turned out to be the same as in the

Laue case: the wave field for certain regions of the dispersion surface forms a two-dimen-
sional standing wave in the H-plane, the nodes of which coincide with the atomic coor-
dinates in that plane. The intensity distribution in the Bragg-reflected beams has
a number of interesting features.

2. Experimental Observations

CuK", and MoK", radiation from a BSV-7 tube has been used in the experiments, having
focus dimensions 0.1 X 0.1 mm2. A plane-parallel plate of a dislocation-free Ge single
crystal was placed at a distance of 250 cm from the source. In order to prevent in ten-
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sity losses in air, a vacuum tube with beryllium windows has been placed between the
source and the crystal. In order to obtain all the reflections simultaneously on the same
film, the latter has been placed at a distance of a few centimeters from the sample.
In a number of cases (when individual Bragg reflections were analysed) the film was
placed at a distance of 2 to 3 m from the sample. TllB sample surface has been treated
mechanically (lapped) and chemically (etched). Surface orientation was controlled by
a standard method. The "Rigaku Denki" A-3 camera has been used in the experiments.
A divergent beam has been used, which made it possible to simultaneously register the
multibeam region and the two-beam background on the same topograph. The incident
beam front was limited by a narrow slit having 0.2 nun width.

All three cases shown in Fig. 1 have been analysed. Under diffraction of radiation in
the first case, when only one (044) beam is Bragg reflected, the angle ex between the
crystal surface and the (Ill) plane is equal to 55°. In the second case ex= 90° (the
crystal surface is parallel to the (011) plane). Here three beams emerge from the crys-
tal through the input surface, making the same angles with the surface as do the Laue-
diffracted beams. The third case is the opposite of the first: the incident beam forms
a 15° angle with the surface, which is equal to the angle between the (044) beam and
the surface in the first case (ex= 125°). Since in the third case, the incident beam enters
the crystal almost parallel to its surface, samples of thickness not larger than 380 mm
have been investigated.

The experimental results may be summarized as follows. In th,e first and second cases
on the Laue topographs ((000), (220) (202), (242), and (224) in the first case, and on (000),
(220), and (202) in the second case) the multibeam region is weakly visible against the
background of two-beam lines, though the two-beam lines themselves are distinctly
visible. Thus the anomalous transmission enhancement effect in these cases is almost
unobservable experimentally, which agrees with results of experiments, where the
pure Laue-geometry case has been considered [4, 8, 11]. In these cases the two-beam
bands are sufficiently intensive, since they are formed as a result of two-beam Laue
diffraction. In the third case the multi-beam region on the transmission beam topo-
graphs is distinctly visible as a region of enhanced intensity against the background of
(220) and (202) lines (see Fig. 2). Two-beam lines in this case originate as a result of the
Borrmann effect in the process of two-beam Bragg diffraction and these lines are weaker
than in the Laue case. Therefore, the multibeam enhancement of intensity appears to
be more visible. One should remember that in the given experimental set-up the image
on the topograph is strongly averaged and broadened because of the non-monochrom-
atic character of the incident radiation within the limits of intrinsic linewidth [14].

For the Bragg-reflected beams the most interesting features have been observed on
the (044)-beam topographs (see Fig. 3). Indeed, in the first and third cases the multi-
beam region on the (044)-beam topograph appears as a dark narrow strip on the back-
ground of a light vertical band corresponding to two-beam scattering (Fig. 3 a and c).
The two-beam band is strongly broadened in the transverse direction due to the non-
monochromatic character of radiation, the result of' which is a non-symmetric form of
the multibeam region. The actual dimensions of the multi beam region coincide with

Fig. 2. (000) beam experimental topograph in the third
case
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the dark horizontal strip width. In the second case, on the contrary, the multi beam
region appears to be lighter than the two-beam line background (Fig. 3b).

The decrease of intensity for the Bragg-reflected beam in multibeam scattering is
obvious from the physical point of view. In the two-beaw case practically all the energy
of the incident plane wave is reflected into the diffracted beam in the maximum re-
flection region. In the multibeam scattering a part of the intensity is transferred to the
other diffracted beams, hence the intensity of the given beam is reduced. This effect has

Fig. 3 Fig. 4

Fig. 3. (044) reflex in a) the first case, b) the second case, c) the third case

Fig. 4. (242) reflex in the third case
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been discovered as early as in 1928 by Meyer [15] in the case of three-beam scattering
and has been named the "aufhellung" effect. However, the increase of intensity, i.e.
the two-beam Bragg reflection enhancement due to multi-beam scattering in the second
case, has been observed for the first time. We will return to this effect in the next sec-
tion.

The multi beam region on the topograph of Bragg reflections (242) and (224) in the
second and third cases has a fine structure, i.e. there is an alternation of enhanced and
reduced intensity regions. Diffraction pattern broadening due to non-monochromatic-
ity takes place in the S-plane inclined at a certain angle to a two-beam band [14].
This is clearly visible in Fig. 4, where the (242) beam topograph in the third case is
shown. The multibeam enhancement area is broadened more than the two-beam band.
Due to the non-monochromatic character of the radiation in the centre of the two-beam

band, and integral intensity along the intersection of S-plane and topograph.plane is
actually being measured.

The above-described results have been obtained for CuKe>:radiation. Similar experi-
ments have been carried out with MoK", radiation. In the latter case we could observe
only the intensity enhancement in the direct beam. The six-beam area on topographs
of all diffracted beams was undistinguishable from the two-beam background. This
fact is probably due to poor resolution of the experiment. With decrease of wavelength
the multibeam area is narrowed and no longer resolved on diffraction topographs.

3. Theory and Discussion of Results

To understand the mechanism of the X-ray interaction with the crystal in the process
of multibeam sacttering one has to know the spatial structure of the standing X-ray
wave forms, originated in the process of plane-wave diffraction, as well as the angular
dependence of the interference absorption coefficients and of intensities for the incident
and diffracted beams. A useful method for the numerical evaluation of these character-

istics has been suggested in [13].
The problem was shown to reduce to an eigenvalue problem for a twelfth-order

complex scattering matrix, and the solution of a twelfth-order system of linear, in-
homogeneous equations in order to obtain the excitation degree for various regions of
the dispersion surface from the boundary conditions.

The scattering amplitude of the incident plane wave in polarization state s' into the
moth diffracted wave in polarization state s(s, s' =n, a) is represented in the following
fu~[~: "

p~' (t) = L: Bms(j)As,(j, t) Dm(j, t) ,
j

(I)

where

Dm(j, t) =
{

exp (ifA2);
1 ;

ym> 0,

Ym< O.
(2)

In these expressions 81and Bms(j) are eigenvalues and normalized eigenvectors of the
scattering matrix, respectively, As(j, t) is the excitation value of the j-th mode depending
on the crystal thickness t, Ym is the direction cosine" of the m-th wave vector with respect
to the inward normal n to the crystal surface.

The incident wave vector ko may be expressed in the vicinity of the multi-wave
scattering direction in the following form:

2n

ko = Xo + T (61nR + 62eocr + 63nh),
(3)

23 p10lysica (a) 85/2
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where Xo is a vector that strictly satisfies all multi-wave diffraction conditionE
(xo + hm)2 =;>(5 for the frequency Wo corresponding to maximum intensity in the
radiation spectrum, hm are reciprocal lattice vectors, A is the radiation wavelength.
In the case considered all reciprocal lattice vectors lie in the same plane (H-plane),
nh is the unit vector normal to this plane, and nR is the unit vector along the direction
that connects the centre of the circle circumscribing the reciprocal lattice vector
hexads with the point 0, eo" = [nh X nR]. Parameters 81' 82, and 83 describe small
deviations of vector ko from Xo both in direction and magnitude. Clearly, the lAC
(imaginary part of si) as well as the transmission and reflection coefficients do not
depend on 83, While the parameter 82 completely determines the direction of the vec-
tor ko, variations of the parameter 81 may arise from changes in the direction of the
incident wave vector in a plane determined by vectors nh and Xo (S-plane) as well as
due to radiation wavelength variations.

The excitation values AsU, t) in the general case have a complex and non-analytic
dependence on the crystal thickness. Also, in a set of 2N eigenvalues Ei(N = 6) there
exist elements with negative imaginary part (Ej' < 0). The number of such elements is
equal to 2M where M is the number of Bragg-reflected beams. Waves corresponding
to such regions have amplitudes increasing with increasing crystal thickness. They de-
scribe the X-ray reflection from the lower output surface of the crystal. Excitation
values for such waves obviously fall off abruptly with increasing crystal thickness.
However, the numerical verification of this result is rather difficult, since the matrix
of a linear inhomogeneous system of equations turns out to be weakly defined: when
t ~ LA, where LA is the absorption length, the matrix contains anomalously large
numbers. In the limiting case when t -> co one may use the approximation AsU, co) =
= 0, if Ej' < 0 [13, 16]. The remaining excitation values are then obtained from a trun-
cated system of equations, corresponding to boundary conditions only on the input
crystal surface.

Such an approximation turns out to be sufficient for the evaluation of Bragg reflec-
tion coefficients, which are independent of the crystal thickness when t -> co. On the
other hand, in this case transmission and reflection coefficients for the Laue beams
depend on thickness. For their evaluation it is convenient to represent the reflection
and transmission coefficients in the form of a power series of a small parameter
exp (-tfLA)' The first terms of this series have the following form:

P~'(t) = ~ eiejt/2 [B~," - ~ B~sfJfS"Btd aDs' ,
j i, ks" J

P ss' - " BI NOS'
k - '-' ks'-"j .

j

In these formulae the index j numerates only the eigenvalues E1with positive imaginary
parts (Ej'> 0) and index i those with negative imaginary parts (s[ < 0), the index 1n
numerates Laue beams, including the incident beam (Ym> 0), and the index k denotes
Bragg-reflected beams (Yk < 0). Accordingly the eigenvector matrix B is divided into
four blocks: two square blocks along the diagonal and two rectangular off-diagonal
blocks. Matrices ,X and ~are inverse matrices of square blocks,

" mS B j - ~ " fJks B i - ~

'-' aj' ,,!S - Vjj' , '-' i' ks - Vii' .
ms ks

(4)

(5)

(6)

Expression (4) is convenient also in the sense that it allows to carry out in explicit
form the smoothening of small oscillations in the Laue beam intensities, corresponding
to interband interactions. While the reflection coefficient for the Bragg beams has its
usual form,

Rk(81' 82) = -} ~ Ip~s'12 ,
ss'

(7)

. u ~..'--~".--~ "---~-
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for the Laue beams this coefficient is approximately equal to

R (6 6 t) - 1 "" -wt I(Bj " B i
fJks" B j

) oS'
1

2
m l' 2' -" "-' "-' e J ms - "-' ms i ks' (Xi '

ss' j i, ks"

(8)

where !hi= ej' are interference absorption coefficients. Formulae (7) and (8) are basic
for further calculations.

Calculations have been carried out under the same geometrical conditions as the
experimental observation (see Fig. 1). Fig. 5 shows the reciprocal lattice vectors and
the two-beam line structure in the plane of parameters 61 and 62, Transmission and
reflection coefficients have been evaluated for crystals of thickness 200, 100, and 50 fLm
in the first, second, and third cases, respectively (Fig. 1). Calculations have shown that
a strong decrease of multi-beam minimal lAC takes place in a broad range of angles
formed by the crystal surface and the plane of reciprocal lattice vectors. This result
follows from the data of Table 1, where together with the minimal lAC the values of
the linear absorption coefficient in the one-beam case in the direction normal to the
surface are given. It also follows from Table 1 that in the symmetrical Laue case
(IX = 0) the minimum lAC value along the normal to the surface is slightly higher than
the absolute minimum corresponding to IX= 40°, when the reflected (044) beam is

OH

(202)

~

(220)

(OH)
(W) Fig. 5. Reciprocal lattice vectors and two-beam

line structure

23.

Table l

ex {imill (em-I) {io/Yo (em-I)

- 30° 1.13 2145
- 20° 1.16 1060
- 10° 1.24 719

0° 1.40 557
10° 1.24 466
20° 1.16 411
30° 1.13 378
40° 1.12 360
50° 1.15 354
60° 1.22 359
70° 1.35 376
800 1.55 407
90° 1.91 459

100° 2.53 545
110° 3.99 697
120° 16.28 1011
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parallel to the crystal surface and the incident beam forms an angle of 80° with this
surface. In the general case of non-symmetric diffraction (iX=f= 0) the minimum value
of lAC is attained under certain reflection of the incident wave vector from the exact
multibeam direction. At the point of the minimum the angle 82 is equal to zero, how-
ever 81 =f=0 has the sign of iX and increases with the magnitude of IX.

Now, what is the mechanism of anomalous transmission enhancement? To answer
this question lets consider the dependence of lAC on the wave amplitudes. It was
shown in [17] that the following relation is valid:

. - S -l (
.
) " E*(

.
) Ximm' E (

'
)floj - floo z J "-' m J m' J ,

mm' XiO
(9)

where EmU) is the electrical field amplitude of the m-th wave, corresponding to the j-th
region of the dispersion surface Sz(j), z is the component (normal to the surface) of the
energy flux vector from the j-th region,

EmU) = Vym L: BmsU) ems,
8

(10)

SzU) = L: JEm(j)12Ym , (11)
m

floo= (2nlJ..) XiO is the normal absorption coefficient, ems the polarization vector,
Ximm'the Fourier component of the imaginary part of the crystal polarizability Xi for
a reciprocal lattice vector (hm - hm,). The quantity Xi is generally a tensor, however,
in the dipole approximation giving the main contribution to absorption, this quantity
has a simple scalar structure. Here the ratio Ximm'IXiOis simply equal to the Debye-
Waller factor.

With an account of the arguments given above one may easily see that the double
sum in (9) represents the resulting field intensity of the j-th region in sites of the crystal
lattice, averaged over the thermal vibrations of the atoms,

floj = floOS;-l(j) Uj(Rn + Un), (12)

where Rn and Un are equilibrium position and displacement vectors, respectively,

1j(1') = IL: Em(j) exp (ihmr)12 .
m

(13)

The function 1j(1'), according to its definition, describes a two-dimensional standing
wave in the H-plane with a period which is a multiple of the crystal lattice period.
Numerical evaluation of this function shows that the lAC deureases, since at certain

incident angles of the plane wave standing waves originate with nodes located exactly
in the sites of a two-dimensional lattice, representing the lattice 'projection on the
H-plane. An example of such a standing wave is given in Fig. 6, where the level curves

Fig. 6. Intensity of the interatomic X-ray field standing
wave in the crystal region with minimum absorption coeffi-
cient in the second case. Atomic projections are located in
the centre and the vertices of a hexagon

'~-'-'-'.~.
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of given values of function Ij(r) normalized by its mean value are shown, for the field
with minimum absorption coefficient {ii = 1.91 cm-1 and the foll<)wing values of the
parameters: 81= 0.65",82 = 0, iX = 90°. The dotted circle limits the cross-section of
the atomic nucleus under thermal vibrations.

The angular dependence of the transmission and reflection coefficients in the second
of the considered cases (iX= 90°, t = 100 [Lm)is shown-in Fig. 7 a to d. One may easily
observe an increase of intensity in the multi beam range of angles both for the transmit-
ted beam and for the Laue-diffracted (220) beam. However, the transmission coeffi-
cient is significantly larger than the reflection coefficient. The intensity of the Bragg-
reflected (242) and (044) beams is decreased in the multibeam range of the "aufhel-
lung" angles, however, one may note a local increase of intensity on the (044) beam pat-
tern near the Bragg direction. Such intensity increase is absent on the angular depend-
ence diagrams for the (044) beam in the first and third cases of Fig. l.

For all diffracted beams a clearly defined enhancement in directions of other dif-
fracted beams is observed, which is due to indirect interactions of these beams. Ob-
viously, this effect is most definitely expressed in the range of angles where the direct
interaction with the incident beam is weak, while the interaction of the incident beam
with the other reflected beam and interaction of reflected beams with each other is
still strong, i.e. when corresponding Bragg conditions hold.

In order to compare our theory with the experiment we have calculated the integral
intensity over angle 81 for the (044) beam in all three cases. The results of this calcula-

r 10"

-10" 0 70"

«o~

<6"

d

ig. 7. Angular dependence of a) (000) beam (RoIR'if'ax=0.9 (1),0.7 (2), 0.5 (3), 0.3 (4), 0.2 (5)0.1 (6),
05 (7), b) (220) beam (R220IR'<A~x= 0.8 (1), 0.6 (2), 0.4 (3), 0.2 (4), 0.08 (5), 0.04 (6), 0.02 (7)),
(242) beam (R102= 0.565 (1), 0.424 (2), 0.353 (3), 0.282 (4), 0.212 (5), 0.141 (6), 0.071 (7),

035 (8)), d) (044) beam (R044 = 0.441 (1), 0.331 (2), 0.220 (3), 0.165 (4), 0.110 (5), 0.055 (6),
D28 (7)) in the 'second case
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r 70

Fig. 8. Theoretical intensity of a (044) beam integrated
over angle 61 in the first (curve 1), second (curve 2), and
third (curve 3) case
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tion, normalized to maximum value, are shown in.Fig. 8. One may observe from this
figure that the anomalous behaviour of a multi.beam region for the (044) beam in the
second case, which has been observed experimentally, is in qualitative agreement with
the theory. A narrow gap in the central part of curve 2, shown in Fig. 8, is invisible on
the experimental topograph due to poor resolution, however, one could notice this
gap on the negative plate.

The anomalous increase of intensity for the (044) beam in six-beam scattering is
apparently related to an indirect excitation effect, which is similar to the Renninger
effect [18]. Indeed, the Bragg angle for the (044) reflection is equal to 8~44) = 50.5°,
therefore the polarization factor for the TC-polarization, being equal tocos 28B = 0.19,
is close to zero. As a result of this practically only half of the radiation is reflected in
the two-beam case, namely the one corresponding to cr-polarization. In the process of
multi-beam scatterlng an additional reflection of the TC-polarized radiation is possible
due to indirect interaction via the other reflections. This results in an increase of the
reflection coefficient.

Thus, the results of our investigation show that the six-beam X-ray diffraction in
the case of a mixed Bragg-Laue geometry represents an interesting and practically
important phenomenon. The existence of strong enhancement for anomalous trans-
mission of the Laue beams, together with strong Bragg reflection of radiation, makes
it possible to create new types of monochromators and interferometers.
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